Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507737

RESUMEN

Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

2.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37461469

RESUMEN

Purpose: Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design: We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results: We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion: This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

3.
J Infect Dis ; 229(2): 558-566, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37889572

RESUMEN

Congenital toxoplasmosis in humans and in other mammalian species, such as small ruminants, is a well-known cause of abortion and fetal malformations. The calcium-dependent protein kinase 1 (CDPK1) inhibitor BKI-1748 has shown a promising safety profile for its use in humans and a good efficacy against Toxoplasma gondii infection in vitro and in mouse models. Ten doses of BKI-1748 given every other day orally in sheep at 15 mg/kg did not show systemic or pregnancy-related toxicity. In sheep experimentally infected at 90 days of pregnancy with 1000 TgShSp1 oocysts, the BKI-1748 treatment administered from 48 hours after infection led to complete protection against abortion and congenital infection. In addition, compared to infected/untreated sheep, treated sheep showed a drastically lower rectal temperature increase and none showed IgG seroconversion throughout the study. In conclusion, BKI-1748 treatment in pregnant sheep starting at 48 hours after infection was fully effective against congenital toxoplasmosis.


Asunto(s)
Aborto Espontáneo , Enfermedades Transmisibles , Toxoplasma , Toxoplasmosis Congénita , Toxoplasmosis , Embarazo , Humanos , Femenino , Ratones , Ovinos , Animales , Toxoplasmosis Congénita/tratamiento farmacológico , Toxoplasmosis Congénita/prevención & control , Mamíferos
4.
Microorganisms ; 11(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764167

RESUMEN

Cryptosporidium species and Giardia duodenalis are infectious intestinal protozoan pathogens that cause alarming rates of morbidity and mortality worldwide. Children are more likely to have clinical symptoms due to their less developed immune systems and factors such as undernutrition, especially in low- and middle-income countries. The severity of the symptoms and clinical manifestations in children may vary from asymptomatic to life-threatening depending on the Cryptosporidium species/G. duodenalis strains and the resulting complex stepwise interactions between the parasite, the host nutritional and immunologic status, and the gut microbiome profile. Structural damages inflicted by both parasites to epithelial cells in the large and small intestines could severely impair children's gut health, including the ability to absorb nutrients, resulting in stunted growth, diminished neurocognitive development, and other long-term effects. Clinically approved cryptosporidiosis and giardiasis drugs have broad antimicrobial effects that have incomprehensible impacts on growing children's gut health.

5.
J Nat Prod ; 86(6): 1596-1605, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37276438

RESUMEN

Xanthoquinodins make up a distinctive class of xanthone-anthraquinone heterodimers reported as secondary metabolites from several fungal species. Through a collaborative multi-institutional screening program, a fungal extract prepared from a Trichocladium sp. was identified that exhibited strong inhibitory effects against several human pathogens (Mycoplasma genitalium, Plasmodium falciparum, Cryptosporidium parvum, and Trichomonas vaginalis). This report focuses on one of the unique samples that exhibited a desirable combination of biological effects: namely, it inhibited all four test pathogens and demonstrated low levels of toxicity toward HepG2 (human liver) cells. Fractionation and purification of the bioactive components and their congeners led to the identification of six new compounds [xanthoquinodins NPDG A1-A5 (1-5) and B1 (6)] as well as several previously reported natural products (7-14). The chemical structures of 1-14 were determined based on interpretation of their 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data. Biological testing of the purified metabolites revealed that they possessed widely varying levels of inhibitory activity against a panel of human pathogens. Xanthoquinodins A1 (7) and A2 (8) exhibited the most promising broad-spectrum inhibitory effects against M. genitalium (EC50 values: 0.13 and 0.12 µM, respectively), C. parvum (EC50 values: 5.2 and 3.5 µM, respectively), T. vaginalis (EC50 values: 3.9 and 6.8 µM, respectively), and P. falciparum (EC50 values: 0.29 and 0.50 µM, respectively) with no cytotoxicity detected at the highest concentration tested (HepG2 EC50 > 25 µM).


Asunto(s)
Antiinfecciosos , Criptosporidiosis , Cryptosporidium , Hongos Mitospóricos , Humanos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Estructura Molecular
6.
ACS Chem Biol ; 18(6): 1378-1387, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37167414

RESUMEN

Potent and selective small-molecule inhibitors are valuable tools to elucidate the functions of protein kinases within complex signaling networks. Incorporation of a photoswitchable moiety into the inhibitor scaffold offers the opportunity to steer inhibitor potency with temporal precision, while the challenge of selective inhibition can often be addressed by employing a chemical genetic approach, termed the analog-sensitive method. Here, we combine the perks of these two approaches and report photoswitchable azopyrazoles to target calcium-dependent protein kinase 1 (CDPK1) from Toxoplasma gondii, a kinase naturally susceptible to analog-sensitive kinase inhibitors due to its glycine gatekeeper residue. The most promising azopyrazoles display favorable photochemical properties, thermal stability, and a substantial difference in IC50 values between both photostationary states. Consequently, the CDPK1 kinase reaction can be controlled dynamically and reversibly by applying light of different wavelengths. Inhibition of CDPK1 by the azopyrazoles drastically relies on the nature of the gatekeeper residue as a successive increase in gatekeeper size causes a concurrent loss of inhibitory activity. Furthermore, two photoswitchable inhibitors exhibit activity against T. gondii and Cryptosporidium parvum infection in a cell culture model, making them a promising addition to the toolbox for dissecting the role of CDPK1 in the infectious cycle with high temporal control. Overall, this work merges the benefits of the analog-sensitive approach and photopharmacology without compromising inhibitory potency and thus holds great promise for application to other protein kinases in the future.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Toxoplasma , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Cryptosporidium/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo
7.
Viruses ; 15(5)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37243273

RESUMEN

Since SARS-CoV-2 caused the COVID-19 pandemic, records have suggested the occurrence of reverse zoonosis of pets and farm animals in contact with SARS-CoV-2-positive humans in the Occident. However, there is little information on the spread of the virus among animals in contact with humans in Africa. Therefore, this study aimed to investigate the occurrence of SARS-CoV-2 in various animals in Nigeria. Overall, 791 animals from Ebonyi, Ogun, Ondo, and Oyo States, Nigeria were screened for SARS-CoV-2 using RT-qPCR (n = 364) and IgG ELISA (n = 654). SARS-CoV-2 positivity rates were 45.9% (RT-qPCR) and 1.4% (ELISA). SARS-CoV-2 RNA was detected in almost all animal taxa and sampling locations except Oyo State. SARS-CoV-2 IgGs were detected only in goats from Ebonyi and pigs from Ogun States. Overall, SARS-CoV-2 infectivity rates were higher in 2021 than in 2022. Our study highlights the ability of the virus to infect various animals. It presents the first report of natural SARS-CoV-2 infection in poultry, pigs, domestic ruminants, and lizards. The close human-animal interactions in these settings suggest ongoing reverse zoonosis, highlighting the role of behavioral factors of transmission and the potential for SARS-CoV-2 to spread among animals. These underscore the importance of continuous monitoring to detect and intervene in any eventual upsurge.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Porcinos , SARS-CoV-2/genética , Nigeria/epidemiología , COVID-19/epidemiología , COVID-19/veterinaria , Pandemias , ARN Viral/genética , Zoonosis/epidemiología , Animales Domésticos , Cabras
8.
Microbiol Spectr ; 11(3): e0064723, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039683

RESUMEN

There is an unmet need for effective therapies for treating diseases associated with the intestinal parasite Giardia lamblia. In this study, a library of chemically validated purified natural products and fungal extracts was screened for chemical scaffolds that can inhibit the growth of G. lamblia. The phenotypic screen led to the identification of several previously unreported classes of natural product inhibitors that block the growth of G. lamblia. Hits from phenotypic screens of these naturally derived compounds are likely to possess a variety of mechanisms of action not associated with clinically used nitroimidazole and thiazolide compounds. They may therefore be effective against current drug-resistant parasite strains. IMPORTANCE There is a direct link between widespread prevalence of clinical giardiasis and poverty. This may be one of the reasons why giardiasis is a significant contributor to diarrheal morbidity, stunting, and death of children in resource-limited communities around the world. FDA-approved treatments for giardiasis include metronidazole, related nitroimidazole drugs, and albendazole. However, a substantial number of clinical infections are resistant to these treatments. The depth of the challenge is partly exacerbated by a lack of investment in the discovery and development of novel agents for treatment of giardiasis. Applicable interventions must include new drug development strategies that will result in the identification of effective therapeutics, particularly those that are inexpensive and can be quickly advanced to clinical uses, such as products from nature. This study identified novel chemical scaffolds from fungi that can form the basis of future medicinal chemistry optimization of novel antigiardial agents.


Asunto(s)
Antiprotozoarios , Productos Biológicos , Giardiasis , Niño , Humanos , Giardiasis/parasitología , Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Metronidazol/uso terapéutico , Hongos
9.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920244

RESUMEN

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Criptosporidiosis , Cryptosporidium parvum , Animales , Bovinos , Ratones , Ratas , Criptosporidiosis/tratamiento farmacológico , Antiprotozoarios/farmacología , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Oocistos
10.
ChemMedChem ; 17(22): e202200421, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36106757

RESUMEN

A series of pyrrolo[2,3-d]pyrimidines were designed in silico as potential bumped kinase inhibitors targeting P. falciparum calcium dependent protein kinase 4 (PfCDPK4), with the potential to inhibit PfCDPK1 based on earlier studies of the two kinases. A small series of these compounds were prepared and assessed for inhibitory activity against PfCDPK4 and PfCDPK1 in vitro. Four of the compounds displayed promising inhibitory activity against either PfCDPK4 (IC50 =0.210-0.530 µM), or PfCDPK1 (IC50 =0.589 µM). These data will enable optimisation of the molecular model to better predict inhibitory activity against PfCDPK4.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Inhibidores de Proteínas Quinasas , Aminas , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Pirimidinas/farmacología , Relación Estructura-Actividad , Antimaláricos/farmacología
11.
Structure ; 30(11): 1494-1507.e6, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36167065

RESUMEN

Fungal infections are the leading cause of mortality by eukaryotic pathogens, with an estimated 150 million severe life-threatening cases and 1.7 million deaths reported annually. The rapid emergence of multidrug-resistant fungal isolates highlights the urgent need for new drugs with new mechanisms of action. In fungi, pantothenate phosphorylation, catalyzed by PanK enzyme, is the first step in the utilization of pantothenic acid and coenzyme A biosynthesis. In all fungi sequenced so far, this enzyme is encoded by a single PanK gene. Here, we report the crystal structure of a fungal PanK alone as well as with high-affinity inhibitors from a single chemotype identified through a high-throughput chemical screen. Structural, biochemical, and functional analyses revealed mechanisms governing substrate and ligand binding, dimerization, and catalysis and helped identify new compounds that inhibit the growth of several Candida species. The data validate PanK as a promising target for antifungal drug development.


Asunto(s)
Antifúngicos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Antifúngicos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Pantoténico/química , Ácido Pantoténico/metabolismo , Hongos
12.
Front Vet Sci ; 9: 901056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832325

RESUMEN

The apicomplexan parasite Neospora (N.) caninum causes neosporosis in numerous host species. There is no marketed vaccine and no licensed drug for the prevention and/or treatment of neosporosis. Vaccine development against this parasite has encountered significant obstacles, probably due to pregnancy-induced immunomodulation hampering efficacy, which has stimulated the search for potential drug therapies that could be applied to limit the effects of neosporosis in dams as well as in offspring. We here investigated, in a pregnant neosporosis mouse model, the safety and efficacy of a combined vaccination-drug treatment approach. Mice were vaccinated intramuscularly with 1 × 107 CFU of our recently generated Listeria (L.) monocytogenes vaccine vector expressing the major N. caninum tachyzoite surface antigen NcSAG1 (Lm3Dx_SAG1). Following mating and experimental subcutaneous infection with 1 × 105 N. caninum (NcSpain-7) tachyzoites on day 7 of pregnancy, drug treatments were initiated using the bumped kinase inhibitor BKI-1748 at 20 mg/kg/day for 5 days. In parallel, other experimental groups were either just vaccinated or only treated. Dams and offspring were followed-up until day 25 post-partum, after which all mice were euthanized. None of the treatments induced adverse effects and neither of the treatments affected fertility or litter sizes. Cerebral infection in dams as assessed by real-time PCR was significantly reduced in the vaccinated and BKI-1748 treated groups, but was not reduced significantly in the group receiving the combination. However, in non-pregnant mice, all three treatment groups exhibited significantly reduced parasite burdens. Both, vaccination as well BKI-1748 as single treatment increased pup survival to 44 and 48%, respectively, while the combination treatment led to survival of 86% of all pups. Vertical transmission in the combination group was 23% compared to 46 and 50% in the groups receiving only BKI-treatment or the vaccine, respectively. In the dams, IgG titers were significantly reduced in all treatment groups compared to the untreated control, while in non-pregnant mice, IgG titers were reduced only in the group receiving the vaccine. Overall, vaccine-linked chemotherapy was more efficacious than vaccination or drug treatment alone and should be considered for further evaluation in a more relevant experimental model.

13.
Antimicrob Agents Chemother ; 66(7): e0001722, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35703552

RESUMEN

A phenotypic screen of the ReFRAME compound library was performed to identify cell-active inhibitors that could be developed as therapeutics for giardiasis. A primary screen against Giardia lamblia GS clone H7 identified 85 cell-active compounds at a hit rate of 0.72%. A cytotoxicity counterscreen against HEK293T cells was carried out to assess hit compound selectivity for further prioritization. Mavelertinib (PF-06747775), a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), was identified as a potential new therapeutic based on indication, activity, and availability after reconfirmation. Mavelertinib has in vitro efficacy against metronidazole-resistant 713-M3 strains. Other EGFR-TKIs screened in follow-up assays exhibited insignificant inhibition of G. lamblia at 5 µM, suggesting that the primary molecular target of mavelertinib may have a different mechanistic binding mode from human EGFR-tyrosine kinase. Mavelertinib, dosed as low as 5 mg/kg of body weight or as high as 50 mg/kg, was efficacious in the acute murine Giardia infection model. These results suggest that mavelertinib merits consideration for repurposing and advancement to giardiasis clinical trials while its analogues are further developed.


Asunto(s)
Giardia lamblia , Giardiasis , Animales , Receptores ErbB , Giardiasis/tratamiento farmacológico , Células HEK293 , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
14.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216497

RESUMEN

Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies have shown that several BKIs have excellent efficacy against neosporosis in vitro and in vivo. However, several members of this class of compounds impair fertility in pregnant mouse models and cause embryonic malformation in a zebrafish (Danio rerio) model. Similar to the first-generation antiprotozoal drug quinine, some BKIs have a quinoline core structure. To identify common targets in both organisms, we performed differential affinity chromatography with cell-free extracts from N. caninum tachyzoites and D. rerio embryos using the 5-aminopyrazole-4-carboxamide (AC) compound BKI-1748 and quinine columns coupled to epoxy-activated sepharose followed by mass spectrometry. BKI-binding proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from BKI-1748 as well as quinine columns. In N. caninum, 12 proteins were bound specifically to BKI-1748 alone, and 105 proteins, including NcCDPK1, were bound to both BKI-1748 and quinine. For D. rerio, the corresponding numbers were 13 and 98 binding proteins, respectively. In both organisms, a majority of BKI-1748 binding proteins was involved in RNA binding and modification, in particular, splicing. Moreover, both datasets contained proteins involved in DNA binding or modification and key steps of intermediate metabolism. These results suggest that BKI-1748 interacts with not only specific targets in apicomplexans, such as CDPK1, but also with targets in other eukaryotes, which are involved in common, essential pathways.


Asunto(s)
Neospora/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Quinolonas/metabolismo , Pez Cebra/metabolismo , Animales , Antiprotozoarios/metabolismo , Células Cultivadas , Quinolinas/metabolismo
15.
mBio ; 12(6): e0257521, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34724830

RESUMEN

Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium-independent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparum cdpk4- parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4- parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild-type and Plasmodium falciparum cdpk4- late gametocyte stages to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events, such as DNA replication, mRNA translation, and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation and thereby is critical for parasite transmission to the mosquito vector. IMPORTANCE Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence. Targeting PfCDPK4 and its substrates may provide insights into achieving effective malaria transmission-blocking strategies.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Gametogénesis/fisiología , Mosquitos Vectores , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Animales , Señalización del Calcio , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Culicidae , Gametogénesis/genética , Células Germinativas/metabolismo , Estadios del Ciclo de Vida , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Masculino , Fosforilación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-34482255

RESUMEN

The apicomplexan parasite Neospora caninum is an important causative agent of congenital neosporosis, resulting in abortion, birth of weak offspring and neuromuscular disorders in cattle, sheep, and many other species. Among several compound classes that are currently being developed, two have been reported to limit the effects of congenital neosporosis: (i) bumped kinase inhibitors (BKIs) target calcium dependent protein kinase 1 (CDPK1), an enzyme that is encoded by an apicoplast-derived gene and found only in apicomplexans and plants. CDPK1 is essential for host cell invasion and egress; (ii) endochin-like quinolones (ELQs) are inhibitors of the cytochrome bc1 complex of the mitochondrial electron transport chain and thus inhibit oxidative phosphorylation. We here report on the in vitro and in vivo activities of BKI-1748, and of ELQ-316 and its respective prodrugs ELQ-334 and ELQ-422, applied either as single-compounds or ELQ-BKI-combinations. In vitro, BKI-1748 and ELQ-316, as well as BKI-1748 and ELQ-334, acted synergistically, while this was not observed for the BKI-1748/ELQ-422 combination treatment. In a N. caninum-infected pregnant BALB/c mouse model, the synergistic effects observed in vitro were not entirely reproduced, but 100% postnatal survival and 100% inhibition of vertical transmission was noted in the group treated with the BKI-1748/ELQ-334 combination. In addition, the combined drug applications resulted in lower neonatal mortality compared to treatments with single drugs.


Asunto(s)
Coccidiosis , Neospora , Parásitos , Quinolonas , Animales , Bovinos , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Femenino , Ratones , Ratones Endogámicos BALB C , Neospora/genética , Embarazo , Ovinos
17.
Comput Struct Biotechnol J ; 19: 5092-5107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589185

RESUMEN

Calcium ions are used as important signals during various physiological processes. In malaria parasites, Plasmodium spp., calcium dependent protein kinases (CDPKs) have acquired the unique ability to sense and transduce calcium signals at various critical steps during the lifecycle, either through phosphorylation of downstream substrates or mediating formation of high molecular weight protein complexes. Calcium signaling cascades establish important crosstalk events with signaling pathways mediated by other secondary messengers such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). CDPKs play critical roles at various important physiological steps during parasite development in vertebrates and mosquitoes. They are also important for transmission of the parasite between the two hosts. Combined with the fact that CDPKs are not present in humans, they continue to be pursued as important targets for development of anti-malarial drugs.

18.
Artículo en Inglés | MEDLINE | ID: mdl-34030110

RESUMEN

Bumped kinase inhibitors (BKIs) target the apicomplexan calcium-dependent protein kinase 1 (CDPK1). BKI-1748, a 5-aminopyrazole-4-carboxamide compound when added to fibroblast cells concomitantly to the time of infection, inhibited proliferation of apicomplexan parasites at EC50s of 165 nM (Neospora caninum) and 43 nM (Toxoplasma gondii). Immunofluorescence and electron microscopy showed that addition of 2.5 µM BKI-1748 to infected HFF monolayers transformed parasites into multinucleated schizont-like complexes (MNCs) containing newly formed zoites, which were unable to separate and form infective tachyzoites or undergo egress. In zebrafish (Danio rerio) embryo development assays, no embryonic impairment was detected within 96 h at BKI-1748 concentrations up to 10 µM. In pregnant mice, BKI-1748 applied at days 9-13 of pregnancy at a dose of 20 mg/kg/day was safe and no pregnancy interference was observed. The efficacy of BKI-1748 was assessed in standardized pregnant mouse models infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. In both models, treatments resulted in increased pup survival and profound inhibition of vertical transmission. However, in dams and non-pregnant mice, BKI-1748 treatments resulted in significantly decreased cerebral parasite loads only in T. gondii infected mice. In the T. gondii-model, ocular infection was detected in 10 out of 12 adult mice of the control group, but only in 3 out of 12 mice in the BKI-1748-treated group. Thus, TgShSp1 oocyst infection is a suitable model to study both cerebral and ocular infection by T. gondii. BKI-1748 represents an interesting candidate for follow-up studies on neosporosis and toxoplasmosis in larger animal models.


Asunto(s)
Coccidiosis , Neospora , Parásitos , Toxoplasma , Animales , Coccidiosis/tratamiento farmacológico , Femenino , Ratones , Oocistos , Embarazo , Pez Cebra
19.
ACS Infect Dis ; 7(5): 1275-1282, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33740373

RESUMEN

New drugs are critically needed to treat Cryptosporidium infections, particularly for malnourished children under 2 years old in the developing world and persons with immunodeficiencies. Bioactive compounds from the Tres-Cantos GSK library that have activity against other pathogens were screened for possible repurposing against Cryptosporidium parvum growth. Nineteen compounds grouped into nine structural clusters were identified using an iterative process to remove excessively toxic compounds and screen related compounds from the Tres-Cantos GSK library. Representatives of four different clusters were advanced to a mouse model of C. parvum infection, but only one compound, an imidazole-pyrimidine, led to significant clearance of infection. This imidazole-pyrimidine compound had a number of favorable safety and pharmacokinetic properties and was maximally active in the mouse model down to 30 mg/kg given daily. Though the mechanism of action against C. parvum was not definitively established, this imidazole-pyrimidine compound inhibits the known C. parvum drug target, calcium-dependent protein kinase 1, with a 50% inhibitory concentration of 2 nM. This compound, and related imidazole-pyrimidine molecules, should be further examined as potential leads for Cryptosporidium therapeutics.


Asunto(s)
Enfermedades Transmisibles , Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Criptosporidiosis/tratamiento farmacológico , Reposicionamiento de Medicamentos , Humanos , Lactante
20.
ACS Infect Dis ; 7(5): 1200-1207, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33565854

RESUMEN

Bumped kinase inhibitors (BKIs) that target Cryptosporidium parvum calcium-dependent protein kinase 1 have been well established as potential drug candidates against cryptosporidiosis. Recently, BKI-1649, with a 7H-pyrrolo[2,3-d]pyrimidin-4-amine, or "pyrrolopyrimidine", central scaffold, has shown improved efficacy in mouse models of Cryptosporidium at substantially reduced doses compared to previously explored analogs of the pyrazolopyrimidine scaffold. Here, two pyrrolopyrimidines with varied substituent groups, BKI-1812 and BKI-1814, were explored in several in vitro and in vivo models and show improvements in potency over the previously utilized pyrazolopyrimidine bumped kinase inhibitors while maintaining equivalent results in other key properties, such as toxicity and efficacy, with their pyrazolopyrimidine isosteric counterparts.


Asunto(s)
Antiprotozoarios , Criptosporidiosis , Cryptosporidium , Animales , Criptosporidiosis/tratamiento farmacológico , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas , Pirroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...